Increasing the approximation order of spline quasi-interpolants
نویسندگان
چکیده
In this paper, we show how by a very simple modification of bivariate spline discrete quasi-interpolants, we can construct a new class of quasi-interpolants, which have remarkable properties such as high order of regularity and polynomial reproduction. More precisely, given a spline discrete quasi-interpolation operator Qd, which is exact on the space Pm of polynomials of total degree at most m, we first propose a general method to determine a new differential quasi-interpolation operator Qr which is exact on Pm+r.Q D r uses the values of the function to be approximated at the points involved in the linear functional defining Qd as well as the partial derivatives up to the order r at the same points. From this result, we then construct and study a first order differential quasi-interpolant based on the C1 B-spline on the equilateral triangulation with a hexagonal support. When the derivatives are not available or extremely expensive to compute, we approximate them by appropriate finite differences to derive new discrete quasi-interpolants Q̃d. We estimate with small constants the quasi-interpolation errors f−Qr [f ] and f−Q̃d[f ] in the infinity norm. Finally, numerical examples are used to analyze the performance of the method.
منابع مشابه
Quadratic spline quasi-interpolants on Powell-Sabin partitions
In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.
متن کاملNumerical integration using spline quasi-interpolants
In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.
متن کاملMultivariate normalized Powell-Sabin B-splines and quasi-interpolants
We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...
متن کاملEffortless quasi-interpolation in hierarchical spaces
We present a general and simple procedure to construct quasi-interpolants in hierarchical spaces, which are composed of a hierarchy of nested spaces. The hierarchical quasi-interpolants are described in terms of the truncated hierarchical basis. Once for each level in the hierarchy a quasi-interpolant is selected in the corresponding space, the hierarchical quasi-interpolants are obtained witho...
متن کاملNear minimally normed spline quasi-interpolants on uniform partitions
Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 252 شماره
صفحات -
تاریخ انتشار 2013